REGIONAL RAIL FEASIBILITY STUDY
Final Report

Bombay, New York
March 17, 2017

County of Franklin
Industrial Development Agency

ERDMAN ANTHONY
145 Culver Road, Suite 200
Rochester, NY 14620
[T] 585.427.8888
[F] 585.427.8914
erdmanaganthony.com
TABLE OF CONTENTS

1. EXECUTIVE SUMMARY ... 1
 INTRODUCTION.. 1
 WHERE IS THE PROJECT LOCATED? .. 1
 WHAT ARE THE OBJECTIVES OF THE PROJECT? ... 1
 WHAT ALTERNATIVES ARE BEING CONSIDERED? ... 1
 HOW WILL THE ALTERNATIVES AFFECT THE ENVIRONMENT? .. 2
 WHAT ARE THE COSTS & SCHEDULES? ... 3
 WHICH ALTERNATIVE IS PREFERRED? .. 3
 WHO WILL BE INVOLVED IN THIS DECISION? ... 3

2. EXISTING CONDITIONS & NEEDS ... 4
 SITE HISTORY: .. 4
 RAILROAD FACILITIES: .. 5
 UTILITIES: .. 6

3. EVALUATION OF ALTERNATIVES .. 7
 DESIGN CRITERIA: ... 7
 TRANLOAD FACILITY CRITERIA: ... 7
 POTENTIAL USERS & DEMAND: ... 10
 ALTERNATIVES: .. 11
 ENGINEERING AND ENVIRONMENTAL CONSIDERATIONS: .. 15
 PERMITS AND APPROVALS: .. 17

4. POTENTIAL FACILITY OPERATIONS ... 18
 BUSINESS MODELS: .. 18
 LOCAL TRAIN SERVICE TO NEW CUSTOMER(s): ... 19

5. NEXT STEPS ... 20
 CSXT INDUSTRIAL DEVELOPMENT PROCESS: ... 20
 NYS DOT OVERSIGHT PROCESS: .. 20
 FUNDING OPPORTUNITIES: ... 21

© 2017 Erdman Anthony
1. **EXECUTIVE SUMMARY**

INTRODUCTION
The County of Franklin Industrial Development Agency (IDA) is investigating the feasibility of the development of a railroad transload facility at three parcels it owns in the Town of Bombay. The study includes development of alternative track alignments, preparation of conceptual cost estimates, evaluation of environmental impacts, and discussion of process to develop a sidetrack at one or more of the sites. The IDA has retained Erdman Anthony to conduct the feasibility study.

This report will be distributed to interested parties for comment and concurrence at the preliminary level. If the proposed improvements are considered feasible, the IDA or a private partner may secure funding and pursue design and construction of the improvements.

The total funding currently available for planning and engineering is $20,000 consisting of grants from Empire State Development, National Grid, and local funding from the IDA. Funding for final design and construction has not been secured yet.

WHERE IS THE PROJECT LOCATED?
The project study area is located in the Town of Bombay, Franklin County, New York. The parcels are in the vicinity of MP QM 177 on CSX Transportation's Montreal Subdivision. The nearest road crossings are at Route 95 and CR 2.
WHAT ARE THE OBJECTIVES OF THE PROJECT?

The project will be developed with the following objectives:

- Examine the repurposing of three parcels owned by the IDA by providing direct rail access to CSX.
- Improve the marketability of one or more of the three parcels.
- Minimize impacts to the environment.

WHAT ALTERNATIVES ARE BEING CONSIDERED?

Alternative 1: Factory Parcel

Under this alternative, a sidetrack would be constructed to access the westerly portion of the property. The sidetrack would begin approximately 950 ft. south of the County Road 2 grade crossing and extend northeasterly to the existing shipping/receiving truck dock at the southwest corner of the factory building. The existing factory building could be used for warehouse or manufacturing space with the addition of a new rail dock entrance for loading/unloading of boxcars, while the asphalt and concrete parking lot could be converted for use an exterior transload for loading/unloading of boxcars, lumber cars, hopper cars, or gondolas with the proper equipment. All design criteria would be met, track space would be the most efficient of all alternatives under consideration, and the existing site improvements would be put to the greatest use.

Alternative 2: Warehouse Parcel

Under this alternative, a sidetrack would be constructed to access the westerly portion of the property. The sidetrack would begin approximately 1,100 ft. south of the County Road 2 grade crossing and extend southeasterly to the west side of the existing warehouse building. The existing warehouse building could be used for warehouse or manufacturing space with the addition of a new exterior transload for loading/unloading of boxcars, lumber cars, hopper cars, or gondolas with the proper equipment. A rail dock cannot reasonably be added to the building due to the shallow foundation and shallow groundwater depth. All design criteria would be met; however, track space would be less efficient than Alternative 1.

The preferred alternative will be selected after coordination with regulatory agencies and project stakeholders, including potential shippers.

The following alternative was considered and eliminated since it does not meet all of the project’s objectives:

Alternative 3: Vacant Parcel

Under this alternative, a sidetrack would be constructed to access the westerly portion of the property. Since CSX does not allow installation of a turnout in a mainline curve, the sidetrack would begin approximately 636 ft. north of the Route 95 grade crossing and extend south to the west side of the vacant property. A new grade crossing of Route 95 would be constructed and the signal system would be replaced to cover both the Montreal Sub. and the new sidetrack. A new exterior transload for loading/unloading of boxcars, lumber cars, hopper cars, or gondolas with the proper equipment would need to be constructed. This alternative would require significant grading, drainage and site improvements, construction of a new access road, and extensive regulatory coordination regarding the grade crossing. The site also does not have the benefit of existing utility services or buildings. All design criteria would be met; however, it is unlikely that CSX would support development of a new sidetrack with limited rail traffic potential that required a new public road crossing.

HOW WILL THE ALTERNATIVES AFFECT THE ENVIRONMENT?

The planning-level environmental impacts for the alternatives under consideration are summarized in the following table. Note that these are mainly based on desktop screenings from available sources and will require refinement if the project progresses.
Refer to Chapter 3 for detailed information for the various alternatives under consideration.

WHAT ARE THE COSTS & SCHEDULES?

The planning-level cost estimates for the alternatives under consideration are summarized in the following table.

<table>
<thead>
<tr>
<th>Activities</th>
<th>Alternative 1 Factory Parcel</th>
<th>Alternative 2 Warehouse Parcel</th>
<th>Alternative 3 Vacant Parcel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>$371,000</td>
<td>$518,000</td>
<td>$728,000</td>
</tr>
<tr>
<td>CSX Force Account</td>
<td>$220,000</td>
<td>$220,000</td>
<td>$490,000</td>
</tr>
<tr>
<td>Right-of-Way</td>
<td>$8,000</td>
<td>$8,000</td>
<td>$18,000</td>
</tr>
<tr>
<td>Engineering and Permitting</td>
<td>$76,000</td>
<td>$96,000</td>
<td>$124,000</td>
</tr>
<tr>
<td>Construction Inspection</td>
<td>$32,000</td>
<td>$40,000</td>
<td>$52,000</td>
</tr>
<tr>
<td>Contingency (10%)</td>
<td>$70,000</td>
<td>$88,000</td>
<td>$141,000</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>$777,000</td>
<td>$971,000</td>
<td>$1,553,000</td>
</tr>
</tbody>
</table>

WHICH ALTERNATIVE IS PREFERRED?

The Preferred Alternative has not been identified as of the writing of this report. Both Alternative 1: Factory Site and Alternative 2: Warehouse site are considered feasible and prudent.

Alternative 3: Vacant Parcel, while feasible, is not considered prudent and is less desirable to CSX from an operational standpoint. The alternative has been eliminated from consideration.

WHO WILL BE INVOLVED IN THIS DECISION?

The draft report was circulated among the various stakeholders for review and comment. Stakeholders included the IDA, CSXT, and NYSDOT. No comments were received from NYSDOT and only minor comments regarding operations and confirmation of budget costs were received from CSXT. The IDA determined that it will not proceed
with the project and pursue funding for the improvements until the marketability of the site to a potential customer can be further fleshed out.

The remainder of this report is a detailed technical evaluation of existing conditions, anticipated impacts of the preferred alternative, cost estimates, and other supporting information.
2. Existing Conditions & Needs

Site History:
The IDA owns three unconnected sites in the Town of Bombay, New York. The three parcels collectively contain approximately 89,000 square feet of buildings and a total land area of 34.82 acres.

Source: NYSGIS Orthoimagery

<table>
<thead>
<tr>
<th>Parcel 1: Factory Site</th>
<th>Parcel 2: Warehouse Site</th>
<th>Parcel 3: Vacant Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax Parcel ID 36-1-11.5</td>
<td>Tax Parcel ID 36.04-1-14</td>
<td>Tax Parcel ID 50-1-11</td>
</tr>
<tr>
<td>13.68 Acres</td>
<td>16.14 Acres</td>
<td>5 Acres</td>
</tr>
<tr>
<td>Building Area 61,000± SF</td>
<td>Building 1 Area 24,000± SF</td>
<td>Building 2 Area 4,200± SF</td>
</tr>
</tbody>
</table>
The Factory site was purchased by Wolverine World Wide, Inc. (WWW) in 1980 and developed for industrial manufacturing purposes. Since development in 1980, the Parcel 1 building housed the Tru-Stitch Slipper Factory, a manufacturer of leather footwear. The existing building was erected circa 1980 and then expanded with a small addition circa 1987. The Tru-Stitch Slipper Factory, a division of WWW, was a manufacturer of branded footwear and performance leathers. The factory operated from approximately 1980 through 1997 after which the factory consolidated operations and moved to Rockford, Michigan. The facility remained vacant for approximately three years after WWW relocated, and was ultimately purchased by the IDA to support industry and jobs in the County. The IDA purchased the properties in 2000 around the same time that Gildan began leasing space in the building. Since 2000, Gildan used the facility to cut bulk cloth material for t-shirts and fleece used for the manufacturing of active sportswear.

The Bombay Slipper Factory, formerly located near the southeastern corner of the Warehouse property, assembled leather slippers and reportedly began its operation in the 1930s. The small warehouse was erected circa 1950 for storage of materials and machinery from the Bombay Slipper Factory. In the late 1970s, Wolverine World Wide Products (WWW) built the additional, larger warehouse currently found on the property. Both current site warehouses were utilized for storage and potentially for maintenance of machinery used by Tru-Stitch for industrial manufacturing of branded footwear and performance leathers. The factory building was demolished by 1994. More recently, Gildan Activewear (Gildan) leased the larger warehouse space for a period before 2000 to store bulk material for tee-shirts and fleece used for the manufacturing of active sportswear. Gildan’s lease expired on October 18, 2007 and the sites have been vacant since then. The properties are currently on the market.

RAILROAD FACILITIES:

The parcels are adjacent to CSX Transportation’s Montreal Subdivision main line. The line extends from Beauharnois, Quebec to Massena, where it continues to Syracuse as the St. Lawrence Subdivision. The line is the northernmost on CSXT’s system as well as one of only two CSX lines that enter Canada.

In recent years, traffic on the Montreal Subdivision dwindled to the point that CSX intended to cut service on the Montreal Subdivision back to one day per week for local traffic and divert its through traffic (long-distance trains) to Canadian Pacific’s D&H line using haulage rights. The line was unofficially put up for sale to shortline carriers in 2007 and again in 2010 and, although significant interest was shown, the line remained with CSX and the haulage agreement with CP Rail was abandoned as CSX refocused efforts to market the line. In 2015, CSX opened its new $100M intermodal terminal in Salaberry-de-Valleyfield, Quebec to expand on the north-south trade opportunities provided by NAFTA. CSX has since added two intermodal trains to the Montreal Secondary.

Maximum authorized train speed on the line is 25 mph. While train length also varies depending on customer needs and traffic levels, the typical maximum length is up to 120 cars.

Local service to industries located north of Watertown is based out of Massena. Local trains were operated on a 5-weekday schedule prior to 2010, when it was curtailed to three days per week due to decreasing traffic levels.

The following highway-railroad grade crossings are located within the study area:
Highway-Railroad Grade Crossings

<table>
<thead>
<tr>
<th>Inventory No.</th>
<th>MP</th>
<th>Street Name</th>
<th>Type of Crossing</th>
<th>No. of Tracks</th>
<th>Warning Devices</th>
<th>Road Speed (mph)</th>
<th>AADT</th>
<th>Total Trains per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>171102N</td>
<td>QM176.94</td>
<td>Route 95</td>
<td>Public</td>
<td>1</td>
<td>FLG</td>
<td>35</td>
<td>2,682</td>
<td>4</td>
</tr>
<tr>
<td>171073F</td>
<td>QM177.47</td>
<td>CR 2</td>
<td>Public</td>
<td>1</td>
<td>FLG</td>
<td>55</td>
<td>828</td>
<td>4</td>
</tr>
</tbody>
</table>

All public grade crossing surfaces have been renewed within the last several years and are in good condition. The surfaces are normal duty with rubber rail interfaces, both gauge and field side, and asphalt paving on a wood tie track structure.

All grade crossings have active warning devices consisting of flashing lights, gates, and bells. The signal at Route 95 was installed in 1992 as part of a NYSDOT-funded project. The installation date of the County Road 2 signal is unknown. All signals are in good condition.

Utilities:
The following underground and overhead utilities are present in the general vicinity of the project study area:

- Overhead electric transmission and distribution lines owned by National Grid (private)
- Overhead and underground telephone lines owned by Verizon (private)
- Underground water service and fire protection lines owned by the IDA (private)
- Underground septic leach field lines owned by the IDA (private)

A detailed evaluation of the existing utilities should be performed as the project progresses.
3. EVALUATION OF ALTERNATIVES

DESIGN CRITERIA:
As the serving railroad, CSXT Transportation’s Specifications for the Design and Construction of Private Sidetracks provides requirements and recommendations for industry tracks to be served by the Railroad and should be used as the basis of the technical specifications for any construction improvements.

General requirements for track design and construction include:
- 100 # minimum, control-cooled rail with 6-hole joint bars
- Double-shoulder tie plates
- AREMA 6” Industrial Grade Oak/MHW cross ties
- #10 TO preferred, #8 minimum
- 12° maximum curve on spur tracks
- 3% maximum compensated grade on spur tracks, level in loading/unloading areas
- 24-foot-wide roadbed with 6 inches of subballast and 6 inches of ballast under the tie

Refer to the referenced Specifications for additional detailed information.

TRANLOAD FACILITY CRITERIA:
A transload facility is a place where shipments are transferred from rail to trucks, thus making rail transportation available to customers not located on a rail line. An optimal transload facility would include track, storage, and security to accommodate multiple users. The proximity of the users to the facility and their need for storage will determine how much space is required. The track configuration should be designed to be flexible, providing track which accommodates commodities requiring loading/unloading from both sides of a railcar (such as dimensional lumber), and be expandable to accommodate future growth.

Space:
The space required for a transload facility is dictated by the length of cars, number of spots, frequency of crossings, length of the shipments (lumber units vs. pipe or structural steel for example). Drainage and track section is always an issue as well as access and security. All transloading or team facilities are very limited if they don't provide access to both sides of a car. A minimum 75’ separation between transload track and a main track or lead is recommended. Each type of transload operation has unique features which need to be considered in the layout.

Warehouses:
Warehouse design is intended to provide a dry environment for the purpose of storing goods and material that require protection from the elements. Warehouses should accommodate the loads of the material to be stored, the associated handling equipment, and the needs of the operating personnel. The design of the warehouse space should be planned to best accommodate the physical dimensions of the material to be stored. The different types of warehouses include heated and unheated warehouses, refrigerated warehouses, and controlled humidity warehouses.

Docks:
Dock space for shipping and receiving terminals is the same as that for most general purpose warehouses. Dock heights on the truck side of the terminal should be approximately 4’-4” above the pavement, with hydraulic ramps at each truck berth to bring the height of truck bed in line with the dock height. Dock levelers may also be beneficial. These hook to the truck bed and rest on the dock floor for transition of the height differential. Bumpers should be installed at the edge of the truck dock to protect the concrete from the impact of backing trucks.
Stairwells from ground level to dock height spaced along the dock should be provided if the dock runs the entire length of the building.

On the rail side of the terminal, dock heights should be 3’-9” above the top of the rail. This will ensure that the average rail car floor is even with dock floor. A rail dockboard will be required to span the gap between the rail dock and railcar.

Interior Dock Space:
In colder climates, interior dock space may provide significant energy savings and more tolerable winter working conditions for dock workers. An opening slightly larger than a standard tractor trailer is required and should be fitted with hoods that fit around the trailer to prevent heat loss from the work space. This method of docking requires a door for every truck berth, which is an added first cost; but the protection and energy advantages make it a feasible alternative. Additionally, receiving or shipping docks can be designed with recessed wells that contain the entire trailer within the warehouse. This method also prevents heat loss and eliminates the need for exterior berthing space, but it utilizes much of the heated space for truck parking.

Storage Sheds:
Sheds are covered storage buildings either of the portable or permanent type, having incomplete exterior walls. Portable or transitory sheds are a prefabricated metal type of shelter that can be dismantled and moved to a more convenient location for reassembly. Due to their transitory nature, these types of sheds seldom have any utilities. Permanent sheds can be either wood, metal, concrete or masonry block, but are permanently anchored to the foundation. These types are more likely to have utilities such as lighting and fire sprinkler systems.

Sheds should be constructed on high ground, remote from water areas, and on terrain that is well drained to carry runoff away from the base of the structure. The ground should be level beneath the structure so that material stored on grade in a shed with unimproved base will not become unstable under high stacking loads. The grounds around the shed should be cleared of brush and low growth since these conditions reduce ventilation and provide cover for pests. They can be built with grade even with the road or raised such that the slab occurs at truck or rail dock height. Material that is in storage for a significantly long time can be stored out of the mainstream of facility activity in sheds that have a more limited accessibility.

Open Storage Areas:
Open storage areas are portions of the facility that are used for the storage of goods that do not require extensive protection from the elements. They are generally unimproved or semi-improved areas which do not provide any cover for the materials stored therein. These areas should be provided with the same access that is given to warehouses and sheds as well as shipping and receiving facilities that are necessary for open storage functioning.

Improved Areas - Open storage areas which are the most flexible as storage sites are the improved areas. These sites are cleared of vegetation, graded, and provided adequate drainage, and then given some sort of hard treatment. This allows the storage of many items that would not be suitable on unimproved areas due to the increased bearing capacity of the surface and the high level of control of runoff. Typical materials used to surface the area are concrete slab and asphalt pavement. Less suitable materials would be crushed stone or gravel. These latter methods of improving the surface will not allow maximum bearing capacities on the ground surface.

Semi-improved Areas - These areas are similar to improved areas in that they are graded and drained, but they are not provided with a hard top surface. The bearing capacity of semi-improved areas will change with the moisture content of the soil and in wet conditions will not bear as heavy a load as in dry conditions.
Unimproved Areas - Surfaces that have not been graded, drained, or hard-surfaced are classified as unimproved. Irregular surface contours do not allow uniform storage heights, and lack of grading and drainage tends to promote localized areas of water ponding and reduce bearing capacity due to saturation of the soil. This is the least desirable form of open storage area since it does not promote dense storage practices nor does it provide for acceptable access to the storage area.

Pavement:
The factors that affect the surfacing requirements of improved open storage areas include vehicle characteristics, traffic volume, and weight requirements of the stored material. Types of surfaces that are frequently used on improved storage areas: rigid pavements, flexible pavements and roller compacted concrete pavements (RCCP).

The choice of type depends upon the usage requirements listed above. Rigid pavement applications such as concrete slabs are durable, long lasting, capable of resisting larger loads, and unaffected by the normal range of temperature fluctuation experienced throughout the year. They do require considerable labor in fabrication and are generally the more expensive method of providing improved surfacing. Flexible pavements are less durable, more sensitive to high temperatures, require greater base and subbase preparation, deflect more than rigid pavements under load, and in recent years have not provided much of a price advantage over rigid pavements. For flexible pavements, the mechanical handling equipment wheel characteristics vary to such an extent that for similar load-carrying capacities, different vehicles may require different surfacing requirements. The wheel loads, number of wheels per vehicle and their arrangement on the vehicle, the tire contact pressure, and the tire contact area all determine the pavement loading and consequently its thickness. Because of this variation in pavement requirements, the engineering construction and maintenance effort may be several times greater for one vehicle than for another with equal load-carrying capability.

Traffic Volume and Flow Patterns - Traffic volume is a primary consideration in the selection of the type of surfacing and its required thickness. It is essential that an adequate study be made to determine the number of passes and the operational flow patterns of each vehicle under consideration so that a reasonable design volume for a particular facility and vehicle can be selected. The material selectivity will also affect the type and thickness of the pavement. Selectivity involves the relative ease with which material can be located and removed from the storage area. Items stacked such that other items must be moved in order to access the needed item will require a number of vehicle passes dependent on the size and number of items to be moved. In this situation, the expected life of the pavement would be shortened due to the increased number of passes.

Weight Requirements - The bearing capacity of the pavement will essentially determine the height to which open storage material can be stacked or the maximum weight of items in one area. The type and thickness of pavement will depend on these storage requirements. Summer heat affects most flexible pavement surfaces, and, subsequently, improper base and subbase construction can cause sinking and puncturing of the pavement surface under heavy loading. Dunnage is the name for the materials used in holds and containers to protect goods and their packaging from moisture, contamination and mechanical damage. Dunnage has the localized overloading effect as materials are stacked and must be considered in the pavement design.

Aisle and Track Layout:
Each open storage area will require specialized attention to provide the proper aisle and track layout for the particular material being stored on the area. The type of material will generally dictate the dimensions used and the proper mechanical handling equipment needed to accomplish transportation of the material. In general, though, efficient open storage layouts provide for straight-line flow of stock from loading and unloading areas to storage areas, ready access to each stock location, and both maximum and efficient utilization of road and track
facilities. Aisles in open storage areas will be essentially roads since the dimensional requirements for mechanical handling equipment are large. Main aisles should be located in the longitudinal direction of the storage space, while cross aisles should be placed perpendicular to the main aisles. One efficient layout of main and cross aisles produces rectangular storage areas that are twice as long as they are wide.

Stormwater Drainage:
The design of the storm drainage system shall be in accordance with State and local requirements. Stormwater may be directed away from the facility through grading, ditch or pipe means. Graded, ditched or piped flow away from the facility must be evaluated to determine the impact upon the existing railroad and neighboring property. The storm drainage system design shall consider existing site features, site access, personnel safety and all laws and codes that apply to storm water runoff and detention.

Site Lighting:
The site should have adequate lighting available for 24-hour operation and security. Lighting levels should conform to the AREMA Manual recommendations.

Security Fence:
The entire transload should be fenced with gates for the truck entrances and the rail entrance. Security fence shall be standard 8 feet high galvanized chain link fence. All security gates shall be designed for the opening size required to accommodate inbound/outbound vehicle flow. Gates should be slide type, motor operated with controls. Gate controls will be required on both sides of the opening and may be remote control, card reader or key pad type controllers. Track gates shall be manual swinging gates with devices to positively hold gates in open position (all in accordance with CSX and legal clearance requirements). The track gate must accommodate a modified track section and/or center panel that prohibits access under the gate.

Potential Users & Demand:
Potential transload customers include:

- Manufacturers
- Lumber yards
- Steel fabricators
- Fertilizer dealers
- Corn, soy, and grain dealers
- Stone aggregate suppliers
- Wood utility pole suppliers and utilities
- Wind farm contractors
- Propane suppliers
- Heating oil suppliers
- Wood pellets and biofuels dealers

It would be prudent for the IDA to develop a database of potential transload customers within County and surrounding region to begin the vetting process. The prospective customers can then be interviewed to determine the company’s current business needs, rail and truck volumes, potential future rail volumes, and the impact that a new transload facility may have on their business in the future. Any interested parties should be followed up with, and potentially put in contact with CSX, to determine if rail transportation is appropriate for their needs.
ALTERNATIVES:
Three conceptual track alignment plans were developed to provide rail access to the properties.

Alternative 1: Factory Parcel
Alternative 2: Warehouse Parcel
Alternative 3: Vacant Parcel

The alternatives were evaluated to determine the optimum site track configuration. Criteria included number of car spots on tangent track, flexibility, operational constraints, cost, and project readiness. The resulting alternatives are under consideration for advancement:

Source: NYSGIS Orthoimagery
Alternative 1: Factory Parcel
Under this alternative, a sidetrack would be constructed to access the westerly portion of the property. The sidetrack would begin approximately 950 ft. south of the County Road 2 grade crossing and extend northeasterly to the existing shipping/receiving truck dock at the southwest corner of the factory building. The existing factory building could be used for warehouse or manufacturing space with the addition of a new rail dock entrance for loading/unloading of boxcars, while the asphalt and concrete parking lot could be converted for use an exterior transload for loading/unloading of boxcars, lumber cars, hopper cars, or gondolas with the proper equipment. All design criteria would be met, track space would be the most efficient of all alternatives under consideration, and the existing site improvements would be put to the greatest use.

Key elements of this alternative include:

Railroad
- No grade crossings would be impacted.
- The proposed turnout is facing point North. This would require service by a southbound local or by a northbound local with a shoving platform. CSX Operations has not yet provided input on the preferred turnout orientation.

Geometry
- 836-ft. total track length.
- Maximum 10° curves.

Operational
- The existing electric, water, and septic system would be attractive to a potential tenant or buyer.
- The existing factory building could be used for warehouse or manufacturing space.
- A new rail dock entrance could be accommodated at the west face of the building for loading/unloading of boxcars. The existing egress door would need to be relocated.
- The track could be also aligned to directly enter into the building, but the internal clearance is slightly less than the 22’ legal requirement due to the interior fire protection lines and cable trays.
- The existing asphalt and concrete parking lot could be converted for use an exterior transload for loading/unloading of boxcars, lumber cars, hopper cars, or gondolas with the proper equipment.

Security
- The property is already enclosed with security fence. A new railroad gate would be required where the track enters.
- The rear of the property has existing site lighting. Light levels should be verified.

Right-of-Way
- One Fee acquisition or Permanent Easement will be required from the Oakes property.
- CSX will require a property lease for the Industry portion of the sidetrack within CSX’s right-of-way. Typically, this is at no cost for a short (under 200-ft.) segment.

Cost
- Project cost of this alternative is estimated at $0.777M.

Environmental
- One intermittent stream crossing required.
- Potential hydric soils are mapped over the majority of the undisturbed area. A wetlands walkover should be performed to rule out the presence of wetlands.
Alternative 2: Warehouse Parcel
Under this alternative, a sidetrack would be constructed to access the westerly portion of the property. The sidetrack would begin approximately 1,100 ft. south of the County Road 2 grade crossing and extend southeasterly to the west side of the existing warehouse building. The existing warehouse building could be used for warehouse or manufacturing space with the addition of a new exterior transload for loading/unloading of boxcars, lumber cars, hopper cars, or gondolas with the proper equipment. A rail dock cannot reasonably be added to the building due to the shallow foundation and shallow groundwater depth. All design criteria would be met; however, track space would be less efficient than Alternative 1.

Key elements of this alternative include:

Railroad
- No grade crossings would be impacted.
- The proposed turnout is facing point South. This would require service by a northbound local or by a southbound local with a shoving platform. CSX Operations has not yet provided input on the preferred turnout orientation.

Geometry
- 1,260-ft total track length.
- Maximum 12° curves.

Operational
- The existing electric, water, and septic system would be attractive to a potential tenant or buyer.
- The existing warehouse building could be used for warehouse or manufacturing space.
- A new rail dock and entrance cannot be readily accommodated at the west face of the building. The existing foundation is likely a slab on grade and cannot accommodate the new track at a typical 8'-6" offset without being undermined. The groundwater elevation is also shallow across the site.
- The track cannot be aligned to directly enter into the building as the internal clearance is slightly less than the 22' legal requirement.
- The existing fouled gravel parking lot would need to be reconstructed for use an exterior transload for loading/unloading of boxcars, lumber cars, hopper cars, or gondolas with the proper equipment.
- The access drive is overgrown and would need to be reconstructed – particularly if semitrailers are to be accommodated.

Security
- New security fence and site lighting would be required.

Right-of-Way
- One Fee acquisition or Permanent Easement will be required from the Oakes property.
- CSX will require a property lease for the Industry portion of the sidetrack within CSX’s right-of-way. Typically, this is at no cost for a short (under 200-ft.) segment.

Cost
- Project cost of this alternative is estimated at $0.971M.

Environmental
- One intermittent stream crossing required.
- Potential hydric soils are mapped over the majority of the undisturbed area. A wetlands walkover should be performed to rule out the presence of wetlands.

The preferred alternative will be selected after coordination with regulatory agencies and project stakeholders, including potential shippers.

The following alternative was considered and eliminated since it does not meet all of the project’s objectives:
Alternative 3: Vacant Parcel
Under this alternative, a sidetrack would be constructed to access the westerly portion of the property. Since CSX does not allow installation of a turnout in a mainline curve, the sidetrack would begin approximately 636 ft. north of the Route 95 grade crossing and extend south to the west side of the vacant property. The new sidetrack would be constructed crossing Route 95 on the alignment of the previously existing Bombay and Moira Railroad (Grand Trunk Railway) line to Moira, NY. The new grade crossing warning devices would be installed to cover both the Montreal Subdivision and the new sidetrack. The addition of this second track to the existing crossing and the installation of new grade crossing warning devices would require a hearing before a NYSDOT Administrative Law Judge, a process which takes approximately 6 months from application to final ruling. A new exterior transload for loading/unloading of boxcars, lumber cars, hopper cars, or gondolas with the proper equipment would need to be constructed. This alternative would require significant grading, drainage and site improvements, construction of a new access road, and extensive regulatory coordination regarding the grade crossing. The site also does not have the benefit of existing utility services or buildings. All design criteria would be met; however, it is unlikely that CSX would support development of a new sidetrack with limited rail traffic potential that required a new public road crossing.

Key elements of this alternative include:

** Railroad
- The proposed turnout is facing point South. This would require service by a northbound local or by a southbound local with a shoving platform. CSX Operations has not yet provided input on the preferred turnout orientation.
- A new grade crossing at Route 95 would be required. The existing signal would require replacement to accommodate both tracks. The new crossing would be required to go through the regulatory hearing process.
- CSX’s maintenance road and material staging area may be impacted by the alignment.

** Geometry
- The proposed turnout would need to be placed to the north or south of the curve in the mainline to meet CSX geometric criteria. While it is feasible to place the turnout to the south of the curve, that would require significant earthwork to cross the CSX right-of-way before reaching the IDA parcel. CSX would likely not allow the sidetrack to be constructed in that location unless the IDA purchases the property.
- 1,200-ft. total track length.
- Maximum 10° curves.

** Operational
- There are no existing improvements or buildings on the site. Any utility services, buildings, or paved transload pads would require significant expense to construct vs. the other alternatives.
- The best practical use for the site would be a transload pad for loading/unloading of boxcars, lumber cars, hopper cars, or gondolas with the proper equipment.

** Security
- New security fence and site lighting would be required.

** Right-of-Way
- CSX will require a Fee acquisition or property lease for the Industry portion of the sidetrack within CSX’s right-of-way. This would likely have an annual fee due to the length of track.

** Cost
- Project cost of this alternative is estimated at $1.553M.

** Environmental
- One intermittent stream crossing required.
- Potential hydric soils are mapped over the majority of the undisturbed area. A wetlands walkover should be performed to rule out the presence of wetlands.
ENGINEERING AND ENVIRONMENTAL CONSIDERATIONS:
All feasible alternatives will require further evaluation if selected for advancement. The following sections summarize pertinent engineering and environmental matters that should be considered.

Site Geology and Hydrogeology:
The NYSDEC Record of Decision for the site remediation completed in 2013 was reviewed to investigate the soil and groundwater characteristics. The Factory Parcel report noted that soils encountered during the remedial investigation primarily consisted of clay and clayey gravel except in the area of the septic leach field where coarse permeable fill materials were used to construct the infiltration layers. The groundwater interface in the unconfined aquifer was encountered at depths between 1.5 and 5 feet below the ground surface across the site. Groundwater elevation data indicate that groundwater flow through the unconfined aquifer is to the southwest, generally toward the unnamed tributary of Pike Creek. The Warehouse Parcel report noted that soils on the large warehouse and in the wooded area to the north and west of that warehouse is very poorly drained silty clay loam with a depth to groundwater of 0 to 12 inches. With fill that was added when the large warehouse was constructed, the depth to groundwater is approximately 3 ft.

The Natural Resource Conservation Service Web Soil Survey was also reviewed to verify the characteristics of the soils outside of the sampling area for the remediation. The soil survey indicated that the majority of the onsite soils at all three parcels are poorly drained or plastic clays. A geotechnical investigation should be performed during the final design phase to confirm the presence of any unsuitable materials underlying the proposed roadbed. Any unsuitable materials will need to be removed and replaced in accordance with CSX Specifications or as recommended by the geotechnical engineer.

Drainage:
Proper preparation of the track structure and good drainage of the subgrade are essential to good performance of the track and crossing surface. Excessive moisture in the soil can cause track settlement, accompanied by penetration of mud into the ballast section. Moisture can enter the subgrade and ballast section from above, below, and/or adjacent subgrade areas.

To the extent feasible, surface and subsurface drainage should be intercepted and discharged away from the track and pavement. Drainage should be facilitated by establishing an adequate difference in elevation between the pavement surfaces and ditches or embankment slopes, and by providing an adequate underdrain system that daylights to a trackside ditch.

Wetlands:
The NYSDEC Environmental Resource Mapper and US Fish and Wildlife Service National Wetlands Inventory were consulted to determine the project’s proximity to any wetlands or water bodies. It was determined that the project is not located in close proximity to any of the above resources; however, further coordination should be performed as the project progresses to determine the actual permits required. The presence of silty clay hydric soils with shallow groundwater depth is a good indicator that there may be federal wetlands on the sites.

Floodplains
The Town of Bombay FIRM Panel 360269B was reviewed to assess any potential floodplain impacts due to the project. The FIRM shows a mapped floodplain along Pike Creek to the west side of the Montreal Sub. The Zone A floodplain touches the railroad line just to the north of Route 95 and just north of CR 2, but does not extend east of the railroad line. It is assumed that the existing railroad embankment is the furthest easterly limit of the mapped floodplain and no impacts would result from the project.
Threatened and Endangered Species
The NYSDEC Environmental Resource Mapper was checked to determine the project’s proximity to any state-listed rare, threatened, or endangered species, and any significant natural communities. It was determined that the project is not located in close proximity to any of the above resources; however, further coordination should be performed as the project progresses.

A review of the USFWS Information for Planning and Conservation (IPaC) was conducted for this project. According to the IPaC reports there are no habitats located within the project areas that are currently designated “Critical Habitat” in accordance with the Endangered Species Act (ESA). Additionally, no wildlife refuges or fish hatcheries were found.

A USFWS IPaC review was performed to determine the presence of any Endangered Species revealing one (1) Endangered Species, the Northern Long-Eared Bat (Myotis septentrionalis) as possibly being present in the vicinity of this project (subsequent information regarding preferred habitat was gathered from the USFWS website):
Northern long-eared Bat (Myotis septentrionalis): The USFWS recently added the northern long-eared Bat to the proposed endangered species list. Northern long-eared bats roost underneath bark, in cavities, or in crevices of both live and dead trees (Larger than 3 inches Diameter Breast Height). They may also roost in cooler places like caves and mines. This bat is opportunistic in selecting roosts and has also been found, rarely, roosting in structures like barns and sheds. A seasonal restriction is recommended for any tree removal associated with this project. The seasonal restriction would allow tree removal to be conducted between October 1 and March 31. Seasonal tree removal would avoid inadvertently impacting the northern long-eared bat.

Historic and Cultural Resources
The New York State Office of Parks, Recreation, and Historic Preservation - State Historic Preservation Office (SHPO) was also consulted to determine the project’s proximity to any known historic or cultural resources. The project does not fall within the check zone for an archeologically sensitive area and is not in close proximity to any state or national register listed properties. Previous cutting and filling operations make it unlikely than any potential artifacts remain on the site in an undisturbed condition. Further coordination with SHPO should also be performed as the project advances.

Hazardous/Contaminated Materials
Parcels 1 and 2 had been Brownfield sites that have since been remediated and have Certificates of Completion from NYSDEC. The DEC Brownfield Cleanup Certificates and supporting documentation were reviewed, and no items of special concern were noted. Additional investigations may be required as the project progresses.

Highway Traffic
The impacted highways of the potential development sites include County Road 1 which runs north-south and Route 95, which runs north-south until its intersection with County Road 1 where it continues west. These highways intersect at a two-way stop controlled intersection with stop signs on the northbound and southbound approaches. The surrounding land use of the potential development site is primarily rural with a mixture of minor commercial and residential uses.

Using the ITE Land Use Code 110 – General Light Industrial, traffic projections of a new development site was used to predict the total number of primary trips generated on to the adjacent highway. Primary trips are a direct result of the proposed development and represent new traffic to the surrounding transportation system. The projected primary trips during typical weekday AM and PM peak hours would be 56 (49 in, 7 out) and 60 (7 in, 53 out), respectively.
Traffic operations of the Route 95 and County Road 1 highways and the two way stop-controlled intersection are projected to have adequate capacity to meet the anticipated demand with acceptable levels of service in the build condition. According to the projected additional traffic under future build condition of the development site, the existing two-way stop controlled intersection of Route 95 and County Road 1 would experience minor increases in delay for all turning movements.

PERMITS AND APPROVALS:
In New York State, most projects or activities proposed by a state agency or unit of local government, and all discretionary approvals (permits) from a NYS agency or unit of local government, require an assessment of the project’s environmental impacts under the State Environmental Quality Review Act (SEQR). The SEQR lead agency and any coordinating agencies should be determined during the environmental review phase.

Wetlands or streams that will be disturbed by the project may be under the jurisdiction of the US Army Corps of Engineers (USACE) or NYSDEC. It is likely that any impacts would be minor and would fall under the disturbance thresholds for Nationwide Permit 14 – Linear Transportation Projects. Permitting needs should be investigated as the project progresses and the disturbance limits are established.
4. POTENTIAL FACILITY OPERATIONS

BUSINESS MODELS:
The following sections highlight some typical business models that could be put in place at the transload facility.

Public Ownership and Public Management:
In this scenario, the land, track, loading docks, ramps, and other physical assets that make up the transload facility would be owned by a public entity or jointly owned by public agencies. Possible owners include the IDA, LDC, or a new LLC formed to divest the other entities of potential liability from the railroad use.

The day-to-day management of the facility would be handled by the public agency. Agency staff would be on site to load and unload trucks and trains, position equipment, keep the site clean, perform security duties, process paperwork, and collect fees, if any, from users. If it is determined that fees will be collected for use of the facility, the fees could be used to offset the day-to-day operating costs. If fees are not to be collected for use of the facility, the agency would need to identify methods for funding operations.

This type of operation is not typically performed by smaller public entities such as the IDA, so it unlikely to be an attractive option.

Public Ownership and Private Management:
This scenario is similar to the above, except that the public entity would contract out operation of the facility to a qualified third-party operator. An operator would be selected based on their experience, ability, and cost to operate the facility. The work could be performed for a fixed fee or at a varying fee based on the use of the facility.

The benefit of this scenario is that the public entity is removed from the day-to-day marketing and operations of the transload site. As it is unlikely that IDA would be interested in adding staff to run the facility and there would be little interest from other public entities to commit staff resources, this may be a desirable option. The lack of existing traffic as well as a stagnant or shrinking industrial base may also make this option less desirable to a private entity.

Private Ownership and Private Management:
Under this scenario, the IDA would sell the property outright to a private entity. The private entity would be totally responsible for operation and business development activities. This model would only be feasible if demand for transload services was high and a fee structure for using the facility could generate a profit in order to remain sustainable.

This model could also be feasible if the businesses using the transload facility enter into a cost-sharing agreement to pay for construction. The IDA could partner with a private entity to develop the site while maintaining public ownership, then turn the site over to a private entity after completion. This may be advantageous in the pursuit of grants opportunities that are only available to public entities; however, there may also be ownership terms stipulated in the grant agreements that would require a public interest for the life of the agreement.

Potential Risks:
While there are benefits and drawbacks to each of the preceding business models, all of the scenarios have common risks that may affect the success of the facility.

- The number of customers using the transload facility proves to be lower than expected.
- Lower than expected traffic volumes could lead to ongoing public subsidies for transload facility operations.
The combined shipping rates charged by multiple rail carriers that will handle traffic may not be competitive with trucking rates.

Transload facility traffic volumes may necessitate roadway capital improvements or more frequent maintenance to accommodate an increase in truck traffic.

The IDA should work with stakeholders to develop a business plan for the new transload facility before beginning to assemble funding. A detailed business plan should outline which business model is most suitable for the facility, how construction and operating costs should be shared, what fees, if any, should be charged for using the facility, and how risks will be managed over time. A detailed business plan will help all stakeholders get a more complete understanding of what would be required to manage and operate a successful transload facility. A detailed business plan would also help gain the support that would be needed if public funds are used to construct and operate a new transload facility.

Local Train Service to New Customer(s) in Bombay:

Selection of any of the alternatives would result in customers which would be at that the northernmost end of the service area of a local train crew out of Watertown. Bombay, at MP QM-176.7 is over 100 miles north of Watertown Massey Yard, approximately MP QM-70.4. By map inspection, it appears that there are no other railroad served customers between Helena (MP QM-169.6, connection with the Roosevelttown IT and the Alcoa East Plant) and the proposed transload site.

The probable operation of the local train would be to pull north from Massey Yard, Watertown (MP QM-70.4) to Massena Yard (MP QM-158.6 to QM-161.0) on the St. Lawrence Sub. The track speed from Watertown to Massena is mostly 40 MPH. At Massena Yard, the track speed drops to 25 MPH. It is assumed that CSXT would prefer to operate to Bombay with the locomotive leading for this distance to Massena. While there are no runaround tracks between Massena Yard and Bombay, there is a small runaround track at Fort Covington, about 5 miles north of Bombay, where US Customs and Border Protection checks trains coming into the USA. It is not clear if CBP would allow a train which serves Bombay to use the Fort Covington Runaround to have the locomotive leading south back to Watertown. Although CSX could run around the train in Massena Yard, it may not be desirable to shove the 15 miles over nine grade crossings to reach Bombay. Alternatively, if a shoving platform is available locally, CSXT may prefer to keep the power on the head end to Bombay, then shove light back to Massena.

It should also be noted that north from Massena, the Montreal Sub. is believed to operate under Canadian Operating Rules, not CSXT Operating Rules. This may be a concern that should be discussed with CSXT Operations if the project progresses.
5. **Next Steps**

CSXT Industrial Development Process:
CSXT’s Industrial Development group is an important stakeholder in the successful completion of this study. The draft report was forwarded to the group for review and comment and only minor comments on operations and the cost estimate for CSXT’s portion of the work were provided.

Once the decision has been made to pursue one of the alternatives, the next logical step is to establish the customer traffic base. The level of detail required includes identifying a specific shipper, car type and ownership, origin/destination stations, end carrier, and required level of service. This information will be used by CSXT’s Marketing group to develop shipping rates for approval by the customer. CSXT’s Operations group will also review the information to confirm that the desired level of service (i.e. number of days per week service will be required) can be provided to the customer.

Once a conceptual approval has been obtained from CSXT, final design, permitting, and approvals can progress. These tasks are expected to include:
- Boundary survey and topographic mapping
- Environmental screening
- SEQR review
- Preparation of engineering plans
- Obtain site plan approval
- Obtain permits
- Obtain sidetrack agreement
- Advertise for bids
- Complete construction

Depending on the funding source and entity leading the development of the project, additional approvals may be required.

NYSDOT Oversight Process:
Under General Municipal Law Article 18-A, Section 854(11), IDAs are required to submit their plans to NYSDOT prior to undertaking any project involving acquisition, construction, reconstruction, improvement, maintenance, equipping or furnishing of a railroad facility. NYSDOT is required to review the operational and financial feasibility of the proposal and provide concurrence with the plans or any comments for improvement before the IDA may advance the project.

The IDA initiated coordination with NYSDOT through a project kickoff meeting on November 1, 2016. Meeting attendees included representatives from the NYSDOT Regional Office and Freight & Passenger Rail Bureau, IDA, and Erdman Anthony. Attendees discussed the scope of the study, history of the sites, potential operating scenarios, and typical transload facility components. Following the meeting the attendees toured the three sites and discussed the pros and cons of each facility.

The NYSDOT Regional Office and Freight & Passenger Rail Bureau were provided the opportunity for review of the draft report, but no comments were received. Further coordination with NYSDOT will be required in order for the IDA to legally advance the project.
FUNDING OPPORTUNITIES:
Various state and federal funding sources are available to assist with the development of the project.

Section 14-d of the New York State Transportation Law authorizes the Commissioner of Transportation to enter into contracts with private corporations, other State Agencies, Public Authorities, political subdivisions of the State, and other States, among others entities listed, for the purpose of maintaining and improving rail transportation services (NYS Transportation Law, 14-d, 1, b). The Commissioner is explicitly authorized to fund capital improvements on any rail transportation facilities, whether it is government or privately owned. The State of New York generally provides State funds for rail capital improvements through the following three programs:

NYSDOT PFRAP:
The Passenger and Freight Rail Assistance Program (PFRAP) is a multi-year freight and passenger rail funding program passed by the State Legislature. Funds are appropriated from general state revenues annually and are available to fund freight and passenger capital improvements. There is no local match requirement for this program, although applicants that propose a local match are scored more favorably. More information on PFRAP, including an application for the 2016 round of funding can be found at: https://www.dot.ny.gov/main/business-center/railgrants

NYSDOT IAP:
The Industrial Access Program was established by Chapter 54 of the Laws of 1985 for the purpose of providing State funding for necessary road and bridge improvements which facilitate economic development and result in the creation and/or retention of jobs. Under the Laws of 1998, projects which provide rail access were made eligible.

The IAP is a combination 60% grant and 40% loan program, up to a maximum of $1 million, with a five-year repayment period; a ten-year repayment period is permitted if the total IAP project costs are over $1 million. If the total award is in excess of $2 million, there are provisions to make the entire award a grant with no repayment required. The regulations governing the Industrial Access Program are contained in Title 17, New York Code of Rules and Regulations, Part 36. The IAP has not been funded for several fiscal years, so it is not currently an option for the project. Additional information regarding IAP can be found at https://www.dot.ny.gov/divisions/operating/opdm/local-programs-bureau/iap

ESD Grant Funds:
Empire State Development Capital Grant funding is available for capital-based economic development projects intended to create or retain jobs; prevent, reduce or eliminate unemployment and underemployment; and/or increase business or economic activity in a community or Region. Eligible Applicants include but are not limited to: for-profit businesses, not-for-profit corporations, business improvement districts, local development corporations, public benefit corporations (including IDAs), economic development organizations, research and academic institutions, incubators, technology parks, municipalities, counties, regional planning councils, tourist attractions and community facilities. Funds may be used to finance infrastructure investments in order to attract new businesses and expand existing businesses, thereby fostering further investment. Infrastructure investments are capital expenditures for infrastructure including transportation, parking garages, water and sewer, communication, and energy generation and distribution. Additional information can be found at http://regionalcouncils.ny.gov/

NBRC EID Investments:
Since its founding in 2008, the Northern Border Regional Commission has provided Federal grants to employment generating projects that have helped reduce poverty, unemployment, and outmigration. This is primarily accomplished through the NBRC’s Economic & Infrastructure Development (EID) Investment program. While the
EID Investment funds originate from the Federal Government, they are approved by consensus between the Federal Government’s NBRC representative (the Federal Co-Chair) and the Governors of the four States in the NBRC region. Projects that develop transportation in the Region are eligible for funding under the program. Grant awards are limited to $250,000 per project, with a minimum match determined by the distress level of the County that the project is located in. Refer to the NBRC EID page for additional information regarding the EID program http://www.nbrc.gov/content/economic-infrastructure-development-investments

EDA EDAP:
The Economic Development Administration’s Public Works and Economic Development Assistance Program provides strategic investments on a competitive merit basis to support economic development, foster job creation, and attract private investment in economically distressed areas of the United States. EDA solicits applications from applicants in rural and urban areas to provide investments that support construction, non-construction, technical assistance, and revolving loan fund projects under EDA’s Public Works and EAA programs. Grants and cooperative agreements made under these programs are designed to leverage existing regional assets and support the implementation of economic development strategies that advance new ideas and creative approaches to advance economic prosperity in distressed communities.

EDA is not authorized to provide grants or cooperative agreements to individuals or to for-profit entities. Eligible applicants for EDA financial assistance under the Public Works and EAA programs include a special purpose unit of a State or local government engaged in economic or infrastructure development activities, such as the IDA. See Section 3 of PWEDA (42 U.S.C. § 3122) and 13 C.F.R. § 300.3. Additional information regarding the EDAP, including the application for the 2016 round of funding can be found at http://www.grants.gov/web/grants/view-opportunity.html?oppId=279842

USDA RBDG:
RBDG is a competitive grant designed to support targeted technical assistance, training and other activities leading to the development or expansion of small and emerging private businesses in rural areas that have fewer than 50 employees and less than $1 million in gross revenues. Programmatic activities are separated into enterprise or opportunity type grant activities. Rural public entities including Towns, State Agencies, Authorities, and Nonprofit corporations are eligible applicants. There is no maximum grant amount for enterprise or opportunity type grants; however, smaller requests are given higher priority. Generally, grants range from $10,000 up to $500,000. There is no cost sharing requirement, although projects with a local match will rank more competitively. See the USDA RDBG site for more information https://www.rd.usda.gov/programs-services/rural-business-development-grants